
Accelerating Circuit Realization via 
a Collaborative Gateway of Innovations  

Ian J. Taylor (1,2) 
Adam Brinckman, Jarek Nabrzyski (1) 

Ewa Deelman, Rafael Ferreira da Silva and and Karan Vahi (3) 
Sandeep Gupta, Soowang Park (4) 

 
1. Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA  

2. School of Computer Science & Informatics, Cardiff University, Cardiff, UK  
3. Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA 

4. Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA  
 

Emails: {ian.j.taylor, abrinckm, naber}@nd.edu  
{deelman, rafsilva, vahi}@isi.edu  
{sandeep, soowangp}@usc.edu  

 

 



Contents 

• Background 

– Domain of the user community 

– General Repository Requirements 

• Design Choices 

– System Design options 

• Architecture and Implementation 

– Open Science Framework Integration 

– CRAFT Specific tools  

• Demo 

 

 



DOMAIN OF THE USER COMMUNITY 
Circuit Realization at Faster Timescales (CRAFT) 



• It costs up to $100 million and takes >> 2 years for a 
large team of engineers to design integrated circuits for 
specific tasks (called ASICs = application specific ICs) 

– E.g. real-time conversion of raw radar data into tactically 
useful 3-D imagery.  

• Defense Department engineers often turn to 
inexpensive and readily available general-purpose 
circuits, and then rely on software to make those 
circuits perform the specialized operations they need.  

– Speeds up the process of system design 

– But the resulting system provides lower performance (speed) 
and consumes far more power than ASIC 

CRAFT Background 



• Circuit Realization at Faster Timescales (CRAFT) is a 

DARPA funded program with the following main goals: 

– Seeks to shorten the design cycle for custom integrated circuits 
from 2 years to months 

– Plans to devise design frameworks that can be readily recast 
when next-generation IC fabrication becomes available  

– To create a repository of innovations so that methods, 
documentation, and intellectual property (IP) can be repurposed, 
rather than reinvented, with each design and fabrication cycle.   

– To make it practical for small design teams to take on complex 
custom circuit development challenges that are out of their reach 
today. 

CRAFT Program 



CRAFT REQUIREMENTS 
Our Role, general requirements and Craft specific requirements 



Our Role in CRAFT:  

• There are 6 performer teams we are responsible for 
creating a repository of innovations for exposing, 
searching, documenting, and collaborating on design 
flows. 
• Need a collaborative space for development of chip ideas 

• Need to document and share design flows 

• And associated metadata about the flows - intellectual 
property (IP) 

• There are a variety of teams, tools and IP, with 
potentially different needs, respecting privacy concerns 

Our Role in CRAFT 



• High level collaborative requirements: 

– A project should form the basis of a CRAFT collaborative 
space.  

– Should contain details, participant info, shared files, a 
discussion forum, searchable tags, a wiki and an audit trail. 

– Sub-projects should be possible to allow hierarchical 
organization of CRAFT programs of research and performers  

– Each project should have a project leader (project admin e.g. 
the PI could be a project admin) 

• To manage that particular project and its sub-projects. 

• And invite collaborators to their project and assign them certain 
privileges.  

– Projects can be open or closed 

CRAFT Requirements 



Source (VHDL / Verilog) 

Functional 

Verification 

Synthesis 

Timing 

Analysis 

Place and 

Route 

Backend 

Checks (DRC, 

LVS, etc) 

Mentor Calibre 

Synopsys Primetime 

Cadence 1st Encounter 

Synopsys Design 

Compiler 

Cadence Incisive 

Simulator 

Ready-to-Fab 

Chip Layout 
ASIC 

Design 

Test Vectors 

Libraries 

Cadence Conformal 

Logical Equivalence Check 

Verified RTL 

Netlist 

Layout 

Verified Layout 

Timing 

Constraints 

CRAFT Program 

Foundry PDK, 

Rule Decks, etc 

• CRAFT needs support for design flows like this: 



CHIP IP 

• Each chip design is modular and typically uses a 
combination of newly designed and previously 
designed modules 

• Module designs available for use across chip 
designs are called Intellectual Property cores (IP) 

• We need to support complex IP Schemas that 
categorize IC types, features and attributes 

• And provide mechanisms for a user to visualize 
the IP using an intuitive format 

 



DESIGN CHOICES 
 Design choices, technology choices and architecture of the repository. 



Design Choices 

• We considered 4 different approaches  

1. architecting and implementing the system from 
scratch;  

2. customizing an existing system to meet the needs;  

3. creating a new interface to an existing system using 
a REST API;  

4. or creating an interface for CRAFT-specific features 
to an existing system using a REST API, and 
leveraging existing tools using a hybrid architecture. 



Design Choices 

• 1 is simple (no dependencies) but timeframe (7 
months) present a high risk to create a 
production system meeting requirements.   

– Also, many of these features already exist on other 
websites; e.g., Github and Bitbucket already have 
many of the project-oriented features - reinventing 
the wheel is pointless.  

• We therefore chose to research other systems – 
we identified two candidate systems: 

– The Open Science Framework 

– HubZero 

 



OSF and HubZero 

• Our study found that OSF had several advantages over 
HUBzero for CRAFT:  

 

OS
F 

Planned 

• Has a full REST API – using Django REST Framework 

• Also has an EmberJS binding to the models for REST API 

• We therefore decided to capitalize on the recent advances 
of OSF to base the development of the CRAFT repository.   

 

 

 

• Lot of tools 
integrated 

• Support for 
wiki, tags, file 
sharing, 
comments & 
audit trails  



ARCHITECTURE & IMPLEMENTATION 
Architecture technologies for implementation 



Repository Organization 

PROJECT 

Design Flow 

JSON File 

Create/Edit/Visualize 

Contributors 

Administrator 

Participants 

Discussion 

Topics 

E-mail Notification 

Data Files 

OSF Storage 

GoogleDrive, etc. 

Project 

Information 

Description 

Tags 

Other 

Tools 

JSON File 

Create/Edit/Visualize 

SUB-PROJECT 

Independent set of users, files, flows and  

permissions 

Should be created by a user with ’write’ privileges  

in the parent project 

Only public information will be seen by the parent 

project 

Indefinite number of sub-projects 

Other Tools 

Wiki 

Details, etc. 

IP Cores 

 



Craft Repository Architecture 

Front End Craft app 
usies EmberJS and 
Semantic UI 
in Client’s browser 

EmberJS models 
provide a Javascript 
interface to the 
REST API 

OSF backend 
provides project 
space and API for 
authentication, 
authorization, files, 
comments, audit 
trails, search and 
versioning 



• We wanted a SPA (Single Page Application) 
framework 
• A Web app that acts like an application, not a set of 

web pages 
• Fully portable to mobile devices – no need for native 

mobile development 

• We looked at Backbone.js, AngularJS and Ember.js. 
• Backbone lacked too many features 

• AngularJS v EmberJS 
• Ember’s handlebars are more flexible than AngularJS 

directives, which extend HTML elements 
• Ember’s data models provide full direct REST 

integration 
• Angularjs lacks good data integration 

• Ember Components are simpler and more modular 
than AngularJS directives. 
• PODS have CSS, Javascript and templates in a directory 

 

WHY EMBER.JS? 



Demo 

https://craftproject.org/  

https://craftproject.org/
https://craftproject.org/


Questions? 

• This work was funded by DARPA under contract #HR0011-
16-C-0043 “Repository and Workflows for Accelerating 
Circuit Realization (RACE)”. 

• And thanks to the Center of Open Science: 

– Jeff Spies for the vision and making this possible 

– Sam Chrisinger – for the help with the Ember OSF 
implementation 

– Matt Vander Werf, Caleb Reinking & Antelmo Aguilar for 
installing OSF at ND. 



SCREENSHOTS 
Screenshot walkthrough of GUI (in replacement of Demo, if not 
available) 



Craft Repository 

REST API 

OSF Instance Craft Repository Dashboard 

Craft Central Authentication (CAS) Service Flow 



Contributors 

23 

 Authentication is via a central authentication service (CAS) 

 For authorization we have: 

• Add/Remove contributors to the project 

• Can invite external contributors to the project 

 Contributors of a sub-project do not necessarily need to belong 
to parent project 

• Define permissions 

 Administrator / Read / Write 

Contributors 

Administrator 

Participants 



Repository: Project Information 

24 

Project 

Information 

Description 

Tags 

 Highly customizable Project Description 

• Uses HTML5 to enable simple edition of 
project description 

 What you see if what you get 
(WYSIWYG) 

 Images can be easily added by simple 
drag and drop an image file in the 
project description text area 

 

• Ability to define representative Tags 
that describe the project 

 

• Shows a list of contributors (users) to 
the project 

 



Discussions 

 Topic-based discussion forum  

• Any contributor from a project can 
start/comment a discussion topic 

 

• Contributors that have interacted 
with a topic, will be notified (via 
email) once any other contributor 
answers/replies a comment 

 

• Discussions are private to a 
project, if the project is private 

 

• General discussions (e.g., DARPA 
announcements), can be made 
through a separate project 
created only for this purpose 



Data Files (Storage) 

 The CRAFT repository allows the 
storage of medium-sized files 
(~15GB) via the browser 
interface 

• Files are stored in the OSF 
storage (ND server) 

 

 For large files, external tools can 
easily be added to the repository 

• Google Drive allows users 
upload files up to 5TB in size 

Note: a Google Drive folder connected to a project 
will be visible by all project members. To share files 

to a subset of contributors (privately), it is 
recommended to create a sub-project and share the 

data with the desired set of contributors 



Design Flows 

Design Flow 

JSON File 

Create/Edit/Visualize 

27 

 Stores design flows described as JSON files 

 Graphical visualization of the flow 
• High-level visualization (easier to see the control flow) 

• Table visualization (easier to see details) 

 Each project manages a single flow 
• Versions (history of changes) of the flow are automatically recorded in the 

repository 

• Sub-projects can be used to represent multiple flows from a single 
performer (see NVIDIA example) 

• Reason: Facilitates collaborative efforts 

 

Creation/Edition  
of flows via the 

repository 
is currently being 

implemented 



Interface for IP – Editing an IP 

• Allows you to pick what attributes for Common 
Categories apply to IP 

• Identify the Category Hierarchy to which IP 
belongs 

• Contact RACE Team for adding new categories!  
race@isi.edu  

IP Cores 

 



IP Visualization 

– Shows category, sub-category, etc. to which IP belong 

– At bottom shows common attributes 

– Click on a (sub-)category to open the list of attributes 



THE END 
Of Replacement Demo 


