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•  AHE: A Lightweight Science Gateway 
•  Application 1: Calculating Drug Binding Affinities  

–  Ensemble Methods 

–  Binding Affinity Calculator 

–  User Friendly Binding Affinity Calculator 

–  High Performance & Cloud Computing 

•  Application 2: Multiscale simulation of nano 
materials 

•  Conclusions 
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Overview 



AHE Motivation 

•  Problems for individual users installing/compiling/
optimizing application 

•  Complexities of using computational 
infrastructures  
–  Job workflows, from staging data to launching jobs 

•  Security is an obstacle for users 
–  Applying for certificates 
–  Generating MyProxy 

•  A solution is needed to simplify usage for scientific 
end users, e.g. to allow clinicians to run 
simulations at the click of a button.  



AHEApplication Hosting Environment 
 

•  Application Hosting Environment 
–  Simplifying Access to the Grid 

–  Community Model.  

•  Simplifies security 
–  End-User avoids grid security and MyProxy configuration and generation. 

•  Simplifies application setup 
–  End-User does not have to compile, optimise, install and configure applications. 

•  Simplifies basic workflow 
–  AHE stages the data, runs and polls the job and fetches the results automatically 

•  Simplifies compute access through RESTful web-
services 

–  Provides a RESTful interface 
–  Clients and services access infrastructure and apps with ‘Software as a Service’ 



6 

Cross Site Submission Architecture  
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Scientific Application (e.g. bloodflow simulation HemeLB) 

 
Application Hosting Environment (AHE) as scientific-specific Client technology 

 

Globus GRAM 4 Interface 

TeraGrid Globus 4 stack 

Security 
Policies 

with gridmaps 

GLUE- 
based 

information 

GridFTP Interface 

HPC Resources 
within NGS 

HPC Resources 
Within PRACE 

Storage Resources 
(e.g. tape archives, robots) 

Common  
Environment 

 
  

massively  
parallel jobs 
with HemeLB 

Common  
Environment 

 
DEISA Modules with HemeLB 

massively parallel 
jobs with HemeLB 

OGSA-BES Interface 

Grid Middleware 
UNICORE with BES 

Security 
Policies 

(e.g. XACML) 

GLUE- 
based 

information 

Stefan Zasada, Steven Manos, Morris Riedel, Johannes Reetz, Michael Rambadt et al.,  
For the Virtual Physiological Human (VPH) projects that require interoperability of numerous Grids 

AHEApplication Hosting Environment 
 



Bridging the gap 

PRACE 

UK NGS 

Leeds 

Manchester 

Oxford 

RAL 

     ARCHER 

UK 

Local resources 

GridSAM 

Globus 

UNICORE 

XSEDE 

Globus 

AHEApplication Hosting Environment 
Federating HPC resources 
 



●  Ligand binding driven by changes in the Gibbs free energy 
●  The more negative the ∆G the stronger the binding 
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∆G 

A   +   B  AB  

Hard to converge 
computations with 
explicit water 

App 1: Calculating Drug Binding Affinities  



+

Absolute binding free energy with end-point methodologies 
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Binding Free Energy Calculation 

The end-point free energy calculation 
methodologies MMPB(GB)SA are 
used to estimate the free energies of 
protein, ligands and their complexes 
using conformations generated via 
molecular dynamics simulation. 
 
1-trajectory vs 3-trajectory 

ΔGbinding

ΔGbinding =Gcomplex −Gprotein −Gligand

Gi =GMMPB(GB)SA
i −TSconf

i

= EMM
i +Gsolv

i −TSconf
i

= EMM
i +GPB/GB

i +GSA
i −TSconf

i
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Computing Binding Free Energy Difference 

Relative binding free energy with alchemical mutation: make use 
of thermodynamic cycle to calculate binding free energy difference 

+

+

ΔGligand1
binding

ΔGligand2
binding

ΔGligand
alch ΔGcomplex

alch

ΔΔGbinding = ΔGligand2
binding

− ΔGligand1
binding = ΔGligand

alch −ΔGcomplex
alch
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Ensemble MD Simulations 

•  The MM/PBSA results follow well defined Gaussian distributions. 

•  Configurational entropies, obtained from normal mode estimates, closely 

resemble normal distributions. 

Drug – HIV-1 protease 

Wright, Hall, Kenway, Jha & Coveney, JCTC, (2014), DOI: 10.1021/ct4007037. 



Computational Application to Drug Affinity Ranking 
– Single MD simulation 
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PROTEIN 

DRUGS 

SINGLE MD 

Predictions from Single Simulations 

Errors uncontrolled 
Results unreproducible 



Computational Application to Drug Affinity Ranking 
– Ensemble Simulations 
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Predictions from Ensemble Simulations 

Errors fully under control 
Results reproducible. 



Free Energy Methodologies  

ESMACS: Enhanced 
Sampling of Molecular 
dynamics with the 
approximation of 
Continuum Solvent 
 
•  “Absolute” free energies 
•  Compare diverse ligands 
•  Statistical error analysis 
•  MM/PBSA 
•  Conformational entropy 
 

TIES: Thermodynamic 
Integration with Enhanced 
Sampling 
 
 
•  Relative binding affinities 
•  “Exact” 
•  Limited range of 

application 
•  Ensemble needed for each 
λ 
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Ensemble Molecular Dynamics Protocol 

•  Run <25 ‘replica’ simulations 

•  Vary only initial velocities 

•  4 ns of production trajectory per replica 

•  More efficient sampling compared to single long simulation 

•  Allows us to examine reproducibility of results 

•  The workflow can be completed within <8 hours of wallclock time, 
provided the required number of cores is available. 

•  To compute more than one binding affinity concurrently, one needs 
to multiply the node requirement by the number of molecules of 
interest. 
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Sadiq, S.K, Wright, D.W., Kenway, O.A. and Coveney, P.V. “Accurate Ensemble Molecular Dynamics Binding Free Energy Ranking of 
Multidrug-Resistant HIV-1 Proteases.” Journal of Chemical Information and Modeling 2010 50 (5), 890-905. 

Wan, S., Knapp, B., Wright, D.W., Deane, C.M., Coveney, P.V., "Rapid, Precise and Reproducible Prediction of Peptide-MHC Binding 
Affinities from Molecular Dynamics that Correlate Well with Experiment", J. Chem. Theory Comput., 11 (7), 3346-3356 (2015), DOI: 
10.1021/acs.jctc.5b00179  



BAC can reliably predict binding affinities of compounds 
with their target proteins, and be used potentially as a drug 
ranking tool in clinical application or a virtual screening 
tool in pharmaceutical lead discovery. 

Blackbox-like 
BAC 

Ranking of 
binding 
affinities  

Binding affinity calculator (BAC) 
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S. K. Sadiq, D. Wright, S. J. Watson, S. J. Zasada, I. Stoica, Ileana, and P. V. Coveney, "Automated 
Molecular Simulation-Based Binding Affinity Calculator for Ligand-Bound HIV-1 Proteases", Journal of 
Chemical Information and Modeling, 48, (9), 1909-1919, (2008), DOI: 10.1021/ci8000937. 



BAC: rapid and accurate binding affinity calculation on 
timescales relating to clinical decision making on drug selection 
and to pharmaceutical lead discovery. 

BAC Workflow: ESMACS Method 
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Total of 1000s cores on 
HPC/cloud resources 
required per study   

~30MB 
 
~15GB 
 
~30GB 
 
 
~1MB 
 
 
= ~50GB 

A. Bhati, S. Wan, D. Wright, P. V. Coveney, "Rapid, accurate, precise and reliable relative free energy prediction 
using ensemble based thermodynamic integration", Journal of Chemical Theory and Computation, 
DOI: 10.1021/acs.jctc.6b00979. 



BAC Workflow: TIES Method 
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Binding Affinity Calculator (BAC) is a software toolkit which 
automates the implementation of TIES (and ESMACS) 
methods for binding affinity calculations 

S.K. Sadiq, D. Wright, S.J. Watson, S.J Zasada, I. Stoica, P.V. Coveney, J. Chem. Inf. Model., 2008, 
48, 1909-1919. 
A.P. Bhati, S. Wan, D.W. Wright & P.V. Coveney, J. Chem. Theory Comput., 2017, 13, 210–222. 



ufBac 

•  User Friendly BAC makes reliable, repeatable 
binding affinity calculations available to anyone 

•  Web interface allows full BAC workflows via 
simple, user friendly client 

•  Manages execution of calculations on a range of 
resources, from HPC to commercial cloud 
platforms 

•  ufBac manages complete study execution and 
data archival on behalf of the user 19 



BAC Requires Unified E-Infrastructures 
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The  BAC workflow requires resources of different scales to execute 

Project 
data 

warehouse 

Coordinating Workflow Engine 

BAC  
Build 

BAC Simulate BAC Analyse 

Server 
resources AHE 

HPC/cloud 
resources 

Result 

Data Staging Services 
Long term 

storage 

Server 
resources 



Petascale Computing Facilities Used by Us 
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Piz Daint       SuperMUC       Cartesius   Anton 

HECToR  

PRACE 

ARCHER EMERALD 

Blue Joule Blue Wonder 



Industrial Strength of BAC 
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“Scientists can work out the way 
that a candidate drug will act on 
a target in the body – a protein – 
and in a matter of a few hours.” 
 
11-13 June 2016 
36 hours on active machine. 

~250,000 cores 
36 hours 

~100 targets 
binding affinities 

SuperMUC 

LRZ Press Release: Post on the London Science Museum Blog: 

Giant Workflow on SuperMUC 



Giant Workflow 
•  60 combinations of drug and protein investigated 

–  30 absolute free energy calculations of diverse ligands 
(ESMACS) 

–  30 relative free energy calculations of related ligands (TIES) 

•  Refine ESMACS protocols 
–  Multiple simulations 
–  Differences between chemical groups 

•  New insights into TIES methodology 
–  Determinants of statistical error 

•  Hardened automation scripts 
–  BAC 
–  FabSim 

Rapid, accurate, precise and reliable relative free energy prediction using ensemble based 
thermodynamic integration, Agastya P. Bhati, Shunzhou Wan, David W. Wright, and 
Peter Vivian Coveney, J. Chem. Theory Comput., 2016, DOI: 10.1021/acs.jctc.6b00979
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CPUs vs GPUs 

•  Speed-up keeps growing on CPU 
machine, up to 40 nodes for a 40K 
atom system (36 atoms per core). 

•  Quicker speed is obtained on single 
GPU accelerated node, scaling up to 
3 nodes on Piz Daint for the 40K 
system. 



Commercial Clouds 
•  Cloud computing is an alternative       

schema for running applications on       
remote resources.  

•  Access to compute is provided in return      
for monetary payment.  

•  Infrastructure as a Service (IaaS) clouds      
provide access to CPU, memory and  storage.  

•  Software as a Service (SaaS) clouds provide access to applications.  

 

We’ve worked to deploy BAC on AWS and DNAnexus cloud platforms, 
and expect to publish it through the Amazon Market Place. We are 
currently evaluating deployment on Microsoft Azure.  

25 
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Cloud Deployment: 
Amazon Web Services 

ufBAC Client

ufBAC Server

AWS Control App

Stage 1

build

Stage 2

simulate

Stage 2

simulate

Stage 2

simulate

Stage 2

simulate

Stage 3

analyse

Stage 3

analyse

Stage 3

analyse

Stage 3

analyse

1 2 3 n

User machine

AWS t2.micro
instance

AWS t2.micro
instance

AWS m4.xlarge
instance

AWS m4.16xlarge
instance

Amazon 
S3 Storage



Cloud Scaling Performance 
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GPU Scaling Performance 
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Microsoft Azure HPC in the Cloud 

•  Microsoft Azure Big Compute 
has InfiniBand-interconnected 
HPC nodes (H-series) for Linux 
and Windows 

•  2-3 microsec MPI latency 
•  nVidia K80 GPU nodes with 

InfiniBand available (K-series) 
•  Azure Batch Shipyard allows 

Dockerized deployment of MPI 
applications – including NAMD 

•  No queueing 
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Scaling to thousands of 
cores with NAMD 
benchmark (preliminary 
results shown) 



Cloud Deployment vs HPC Investment 

•  Cloud is ‘elastic’ – should always have enough resource to 
run your workflow.  

•  Public HPC runs on first come first served queue 
 
•  Clouds have security architectures beyond those provided 

by conventional HPC providers. 
 
•  Cloud gives access to resources at scale to ‘try things out’ 

but, at large scale, production cloud is expensive 

•  Learning curve is steep – need to intall most things  

30 



HPC Deployment: 
Radical/Ensemble Toolkit 
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ufBAC Client

ufBAC Server

Radical/Ensemble Toolkit

Stage 1

build

Stage 1

build

Stage 1

build

Stage 1

build

Stage 2

simulate

Stage 2

simulate

Stage 2

simulate

Stage 2

simulate

Stage 3

analyse

Stage 3

analyse

Stage 3

analyse

Stage 3

analyse

1 2 3 n

User machine

ufBAC server

HPC resource

Radical Cybertools/
Ensemble Toolkit



Four Layers: 
L4: Application  

L3: Workload Management (WLMS) 

L2: Task Run-time (TRS) 

L1: Resource Access Layer 

Abstractions & Building Blocks: 

L1: RADICAL-SAGA  Distributed job 
submission & standard interface  

L2: RADICAL-Pilot (RP) Abstraction for 
Resource Management 

L3: RADICAL-WLMS, Ensemble 
Toolkit 

Cross-layer: RADICAL-Analytics 

 

RADICAL-Cybertools 



 

Workflows aren’t what they used to be! 

Pervasive, sophisticated but no 
longer confined to “big science” 

Diverse requirements, “design points”; 
unlikely “one size fits all”  

Extend traditional focus from end-users to 
workflow system/tool developers! 

Building Blocks (BB)  permit workflow 
tools and applications 

Two illustrative examples of building 
blocks: 

WLMS (AIMES Model) 

Pilot Job Systems (P* Model) 

“Building Blocks” Approach to Workflow Systems  



RADICAL-Cybertools: Ensemble Toolkit (EnTK) 

Ensemble-Member = task = Execution Unit 
Multi-node, sub-node, MPI/non-MPI... 
Simulation, Analysis, .. 

AIMES Execution Model 
Support for heterogeneous tasks 
Adaptive Workload:  Tasks and/or relations 

between tasks changes, or unknown a 
priori 

 
Multiple dimensions of scalability:  

Concurrency: O(10K) tasks 
Task size: O(1)-O(1,000) cores 
Launch: O(100+) tasks per second 
Task duration: O(1)-O(10,000) seconds 

 



Design Challenge: How to (i) provide 
performance (ii) adequate functional 
extensibility, (iii) keep new software 
footprint. 

Implementation: Use (i) functionally well-
defined building blocks, (ii)  provide 
well-defined interfaces and (iii) 
separate (performance and 
interoperability) from functionality. 

HT-BAC: BAC + RADICAL-Cybertools  



Size of data generated: ~10TB . All data is stored on the RDF and on EUDAT (www.eudat.eu). 

From micro to meso …. 
App	2:	Mul)scale	simula)on	of	nanomaterials	



App	2:	Mul)scale	simula)on	of	nanomaterials	

D. Groen, A. Bhati, J. Suter, J. Hetherington, S. Zasada, P. V. Coveney, ", Comp Phy Commun, 207, 375–385 
(2016) 

From micro to meso …. 



App	2:	Mul)scale	simula)on	of	nanomaterials	

•  Material	 proper,es	 at	 the	
macroscopic	 scale	 depend	
)ghtly	 on	 the	 structure	 of	 the	
material	 and	 its	 evolu,on	 at	
finer	scales	

•  Using	 reduced	 models	 to	
account	 for	 this	 dependency	
such	 as	 cons,tu,ve	 equa,ons	
has	 limited	 accuracy	 and	
stability	 (e.g.	 when	 nonlinear,	
ine las,c,	 an isotropic ,	 or	
history-dependent	behaviors)	

↪  	 	 Mul)-scale	 simula)ons	
replace	 reduced	 models	 with	
structural	 models	 of	 the	
material	at	finer	scale	

From meso to macro …  



•  Two	 or	 more	 structural	 models	
loosely	 coupled	as	part	of	a	 single	
simula,on	

•  par,al	 informa,on	 exchange	 in	
chosen	space-)me	loca)ons	

•  informa,on	 exchange	 both	 ways	
(boDom-up	and	top-down)	

•  discon)nuity	 of	 ,me	 and	 space	
discre,za,on			

•  faster	 relaxa)on	 ,mes	 at	 lower	 scales	
→	tn		≪	Δtm	

•  periodicity	in	space	→	xn	≪	Δxm	

•  Implementa,on	of	a	FE-MD	HMM	
•  Macroscale	 model	 based	 on	
con,nuum	 mechanics	 using	 the	
finite	element	library	Deal.II	

•  Nanosca le	 mode l	 based	 on	
molecular	dynamics	using	LAMMPS	

•  Exchange	of	strains	(top-down)	and	
stresses	and	s)ffness	(boDom-up)	

Heterogeneous	Mul)scale	Methods	(HMM)	

xN

xM

ΔxM

ΔxN

ΔtN tN ΔtM tM

space scale

time scale

simulation

fine model

coarse model



Workflow	of	the	Finite	Element	-		
Molecular	Dynamics			
HMM	Coupling	Scheme	

•  Solving	 con,nuum	 mechanics	
quasi-sta)c	 equilibrium	 using	
an	 incremental	 itera)ve	
algorithm	

•  Finite	 element	 computa,ons	
are	short	and	parallelised	

•  At	 a	 given	 ,me,	 nanoscale	
state	 updates	 can	 be	 run	
i n d e p e n d e n t l y	
asynchronously	 on	 available	
machines	



The	FE-MD	HMM	in	the	ComPat	project	

management	of	
molecular	
dynamics	jobs	
asynchronous	run		

interpola)on	of		
nanoscopic	states	

macro-scale:	Deal.II	
finite	element	model	

nanoscale:	
LAMMPS	
molecular	
dynamics	model	

transfer	of	strains,	
stresses	and	
s)ffness	between	
Deal.II	and	
LAMMPS	



Conclusions 

•  Reliable, accurate and reproducible binding affinity ranking 
can be obtained only by ensemble simulations. 

•  Scalable approach: results in hours. 

•  ufBAC is a science gateway that hides the complexity of 
the workflow in a simple, web accessible application 

•  QCG Computing, RADICAL-Cybertools and Ensemble 
ToolKit (EnTK) are a realization of the Building Blocks 
approach to scalable workflows. 

•  Allows BAC developers to focus on implementing new 
ensemble based approaches independent of platform and 
performance. 

•  Heterogeneous multiscale materials simulations comprise 
complex workflows of operations.  

•  EU H2020 ComPat project e-infrastructure used to 
manage simulations and mutiscale modelling linkages, 
constituting a science gateway for multiscale computing.  

42 



Acknowledgements 

•  Sarah Skerratt 
•  Kiyoyuki Omoto 
•  Veerabahu Shanmugasundaram 
•  Sharan K. Bagal 

•  Agastya P. Bhati 
•  Shunzhou Wan 
•  David W. Wright 
•  Stefan J. Zasada 

•  Ian Wall 
•  Darren Green 
•  Paul Bamborough 


