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Overview A

AHE: A Lightweight Science Gateway
Application 1: Calculating Drug Binding Affinities

— Ensemble Methods

— Binding Affinity Calculator

— User Friendly Binding Affinity Calculator
— High Performance & Cloud Computing

Application 2: Multiscale simulation of nano
materials

Conclusions



AHE Motivation =

* Problems for individual users installing/compiling/
optimizing application

« Complexities of using computational
iInfrastructures
— Job workflows, from staging data to launching jobs

« Security is an obstacle for users
— Applying for certificates
— Generating MyProxy

* A solution is needed to simplify usage for scientific
end users, e.g. to allow clinicians to run
simulations at the click of a button.



AHEApplication Hosting Environment

Application Hosting Environment
— Simplifying Access to the Grid

— Community Model.
« Simplifies security
— End-User avoids grid security and MyProxy configuration and generation.

« Simplifies application setup
— End-User does not have to compile, optimise, install and configure applications.

« Simplifies basic workflow
— AHE stages the data, runs and polls the job and fetches the results automatically

« Simplifies compute access through RESTful web-

services

— Provides a RESTful interface
— Clients and services access infrastructure and apps with ‘Software as a Service’



Application Hosting Environment (AHE) as scientific-specific Client technology
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Globus GRAM 4 Interface OGSA-BES Interface

TeraGrid Globus 4 stack Grid Middleware
UNICORE with BES

Security Security

Policies Policies

with gridmaps (e.g. XACML)

HPC Resources Storage Resources HPC Resources
within NGS (e.g. tape archives, robots) Within PRACE

Stefan Zasada, Steven Manos, Morris Riedel, Johannes Reetz, Michael Rambadt et al.,
For the Virtual Physiological Human (VPH) projects that require interoperability of numerous Grids




Federating HPC resources UK
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App 1: Calculating Drug Binding Affinities

. Ligand binding driven by changes in the Gibbs free energy
. The more negative the AG the stronger the binding

A+ B «——2 AB

Hard to converge
computations with
explicit water




Binding Free Energy Calculation &

Absolute binding free energy with end-point methodologies

+ . AGbindinﬁ .
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binding complex protein
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The end-point free energy calculation

methodologies MMPB(GB)SA are
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Computing Binding Free Energy Difference 2

Relative binding free energy with alchemical mutation: make use
of thermodynamic cycle to calculate binding free energy difference

A Gbinding

ligand1 .
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Ensemble MD Simulations th

« The MM/PBSA results follow well defined Gaussian distributions.

« Configurational entropies, obtained from normal mode estimates, closely

resemble normal distributions.
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Predictions from Single Simulations

Computational Application to Drug Affinity Ranking
— Single MD simulation

SINGLE MD
o o
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DRUGS

Errors uncontrolled
Results unreproducible
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Predictions from Ensemble Simulations dh

Computational Application to Drug Affinity Ranking
— Ensemble Simulations

ENSEMBLE MD

ojele]d
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DRUG Neolvie 2 '_

: 1
AGExperimem

Errors fully under control
Results reproducible.
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Free Energy Methodologies &

ESMACS: Enhanced
Sampling of Molecular
dynamics with the
approximation of
Continuum Solvent

* “Absolute” free energies
Compare diverse ligands
Statistical error analysis
MM/PBSA
Conformational entropy

TIES: Thermodynamic
Integration with Enhanced
Sampling

» Relative binding affinities

« “Exact’

 Limited range of
application

 Ensemble needed for each
A

14




Ensemble Molecular Dynamics Protocol th

* Run <25 ‘replica’ simulations

« Vary only initial velocities

* 4 ns of production trajectory per replica

« More efficient sampling compared to single long simulation
« Allows us to examine reproducibility of results

« The workflow can be completed within <8 hours of wallclock time,
provided the required number of cores is available.

« To compute more than one binding affinity concurrently, one needs
to multiply the node requirement by the number of molecules of
interest.

Sadiq, S.K, Wright, D.W., Kenway, O.A. and Coveney, P.V. “Accurate Ensemble Molecular Dynamics Binding Free Energy Ranking of
Multidrug-Resistant HIV-1 Proteases.” Journal of Chemical Information and Modeling 2010 50 (5), 890-905.

Wan, S., Knapp, B., Wright, D.W., Deane, C.M., Coveney, P.V., "Rapid, Precise and Reproducible Prediction of Peptide-MHC Binding
Affinities from Molecular Dynamics that Correlate Well with Experiment”, J. Chem. Theory Comput., 11 (7), 3346-3356 (2015), DOI:
10.1021/acs.jctc.5b00179 15



Binding affinity calculator (BAC) =

BAC can reliably predict binding affinities of compounds
with their target proteins, and be used potentially as a drug
ranking tool in clinical application or a virtual screening

tool in pharmaceutical lead discovery.

| Ranking of
Blackbox-like binding
BAC affinities

S. K. Sadiq, D. Wright, S. J. Watson, S. J. Zasada, I. Stoica, lleana, and P. V. Coveney, "Automated
Molecular Simulation-Based Binding Affinity Calculator for Ligand-Bound HIV-1 Proteases”, Journal of
Chemical Information and Modeling, 48, (9), 1909-1919, (2008), DOI: 10.1021/ci8000937 16



BAC Workflow: ESMACS Method e

BAC: rapid and accurate binding affinity calculation on
timescales relating to clinical decision making on drug selection

and to pharmaceutical lead discovery. Total of 1000s cores on

HPC/cloud resources
required per study

Preparation
}
rep1 rep2 rep3 . rep25
~30MB

N L N o NAMD, 144*25
Equilibration Equilibration Equilibration Equilibration ~1 5GB

cores 1.2 hours

NAMD, 144*25 ~
Production Production Production e Production 3OGB

cores 2.4 hours

MMPBSA & MMPBSA & MMPBSA & MMPBSA& | AmberTools, 96*25
NMODE NMODE NMODE NMODE cores, 2 hours ~1MB
[ Statistical Analyses ] Desktops, 3 hours = ~50GB

A. Bhati, S. Wan, D. Wright, P. V. Coveney, "Rapid, accurate, precise and reliable relative free energy prediction
using ensemble based thermodynamic integration", Journal of Chemical Theory and Computation, 17
DOI: 10.1021/acs.jctc.6b00979.



BAC Workflow: TIES Method

Binding Affinity Calculator (BAC) is a software toolkit which
automates the implementation of TIES (and ESMACS)
methods for binding affinity calculations

Preparation

Replicas
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[ Statistical Analyses J Desktops, <10 minutes

S.K. Sadiq, D. Wright, S.J. Watson, S.J Zasada, |. Stoica, P.V. Coveney, J. Chem. Inf. Model., 2008,
48, 1909-1919. 18
A.P. Bhati, S. Wan, D.W. Wright & P.V. Coveney, J. Chem. Theory Comput., 2017, 13, 210-222.



« User Friendly BAC makes reliable, repeatable
binding affinity calculations available to anyone

* Web interface allows full BAC workflows via
simple, user friendly client

» Manages execution of calculations on a range of
resources, from HPC to commercial cloud
platforms

« ufBac manages complete study execution and
data archival on behalf of the user

19



BAC Requires Unified E-Infrastructures ¢

The BAC workflow requires resources of different scales to execute

P — Coordinating Workflow Engine

data
warehouse

Result

Server

Server
resources AH E resources

HPC/cloud
resources

Long term
storage

20



Petascale Computing Facilities Used by Us &

XSEDE

Extreme Science and Engineering
Discovery Environment

M) jiLicH

EMERALD

Hartree Centre
Science & Technology Facilities Council Blue Joule Blue Wonder 21




Giant Workflow on SuperMUC =

Industrial Strength of BAC

SuperMUC

“Scientists can work out the way
that a candidate drug will act on

a target in the body — a protein —
and in a matter of a few hours.”

11-13 June 2016
36 hours on active machine.

LRZ Press Release;

gauss-centre.eu, B¢ ||Q

GCS -

Gauss Centre for Supercomputing

News & Events
Press releases

| News

| Events PRESS RELEASE 03/2016:

wEa ¥ A 9 9

€ )G
HPC SERVICES I TRAINING & WORKSHOPS | PROJECTS | NEWS & E
T T
F- 5 N cign Y S

GCS Home I News & Events | Press releases ] SuperMUC Enables Major

Vi O

SuperMUC Enables Major Finding in Personalised Medicine

Leibniz Supercomputing Centre

of the Bavarian Academy of Sciences and Humanities

- U‘ y A

~100 targets

binding affinities

~250,000 cores
36 hours

Post on the London Science Museum Blog:

eeeeeeeeeeeeeee q.uk EJ wB ¥ A O
SCis

I 1,;;:’\ HEE < Q MENU —
d Cum

Supercomputer bid to create the first truly
personalised medicine

By Roger Highfield | 13 June 2016

22



Giant Workflow

« 60 combinations of drug and protein investigated

— 30 absolute free energy calculations of diverse ligands
(ESMACS)

— 30 relative free energy calculations of related ligands (TIES)

« Refine ESMACS protocols

— Multiple simulations
— Differences between chemical groups

* New insights into TIES methodology
— Determinants of statistical error

« Hardened automation scripts
— BAC

V.

— FabSi ( w/u
Im o | e
a A I VEVA YA 72 *
Themed issue: Insights from advanced methods in molecular dynamics

(CHEMISTRV “;‘ ‘}‘ WS . 175§
Rapid, accurate, precise and reliable relative free energy prediction using ensemble based

thermodynamic integration, Agastya P. Bhati, Shunzhou Wan, David W. Wright, and
Peter Vivian Coveney, J. Chem. Theory Comput., 2016, DOI: 10.1021/acs.jctc.6b00979




CPUs vs GPUs th

SuperMUC: Haswell Nodes Piz Daint
150 : T ' T ' T ' 120 ' T ' T ' T
0—o 40,097 atoms 0—o 40,097 atoms
6—0 93,896 atoms 6—0 93,896 atoms
0—o 1,065,288 atoms 0—o 1,065,288 atoms
100 80
> >
5 5
8, 8,
Z 2
401
OO 10 20 30 40 OO 2 éll é 8
Number of nodes Number of nodes
Cartesius
120 T T T T T T
. 0—o 40,097 atoms
« Speed-up keeps growing on CPU e D6 s
machine, up to 40 nodes for a 40K “
atom system (36 atoms per core). k
« Quicker speed is obtained on single =
GPU accelerated node, scaling up to 40 /_‘\/\\
3 nodes on Piz Daint for the 40K | e -3
system.
0 2 4 6 8

Number of nodes



Commercial Clouds

« Cloud computing is an alternative
schema for running applications on
remote resources.

» Access to compute is provided in return
for monetary payment.

- Infrastructure as a Service (laaS) clouds
provide access to CPU, memory and storage.

Cloud Computing

« Software as a Service (SaaS) clouds provide access to applications.

We’ve worked to deploy BAC on AWS and DNAnexus cloud platforms,
and expect to publish it through the Amazon Market Place. We are

currently evaluating deployment on Microsoft Azure.
25



Cloud Deployment:
Amazon Web Services

[ ufBAC Client User machine

AWS t2.micro
instance
AWS t2.micro
instance
Amazon
S3 Storage

AWS m4.16xlarge
instance

AWS m4.xlarge
instance

26




Cloud Scaling Performance

Nanosecond/day

;t2.mi;cro |

4 8 12

t2.micro

c4.4xlarge

c4.8xlarge

m4.16xlarge

1 CPU/1 GB
RAM

16 CPU/30
GB RAM

36 CPU/60
GB RAM

64 CPU/256
GB RAM

27



A

GPU Scaling Performance

ApoAT

25
20

15

10

Nanoseconds Per Day

Dual-CPU 1IX GPU 2X GPU
P100 P100

Dual CPU server, Intel E5-2699v4@2.2GHz, 3.6GHz Turbo [Broadwell- EP), Tesla P100, ECC
off, Autoboost ON
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Microsoft Azure HPC in the Cloud

« Microsoft Azure Big Compute
has InfiniBand-interconnectec
HPC nodes (H-series) for Linux
and Windows

« 2-3 microsec MPI latency

* nVidia K80 GPU nodes with
InfiniBand available (K-series)

* Azure Batch Shipyard allows
Dockerized deployment of MPI
applications — including NAMD

* No queueing

Scaling to thousands of
cores with NAMD

benchmark (preliminary
results shown)

30
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Cloud Deployment vs HPC Investment

* Cloud is ‘elastic’ — should always have enough resource to
run your workflow.

* Public HPC runs on first come first served queue

* Clouds have security architectures beyond those provided
by conventional HPC providers.

* Cloud gives access to resources at scale to ‘try things out’
but, at large scale, production cloud is expensive

* Learning curve is steep — need to intall most things

30



HPC Deployment:
Radical/Ensemble Toolkit

s,
WS,
R o
K T
N SR
3 &y
e o
=% S
Sy
“rserert’

| ufBAC Client | User machine

HPC resource

Radical Cybertools/
Ensemble Toolkit

31




RADICAL-Cybertools

,,,,,,,
"""""
L

Four Layers:
L4: Application

L3: Workload Management (WLMS)
L2: Task Run-time (TRS)
L1: Resource Access Layer

Abstractions & Building Blocks:

L1: RADICAL-SAGA Distributed job
submission & standard interface

L2: RADICAL-Pilot (RP) Abstraction for
Resource Management

L3: RADICAL-WLMS, Ensemble
Toolkit

Cross-layer. RADICAL-Analytics

—
s

(msa) moipjaom

osioadg utrewoq

' Tools and Scientific
Applications Workflows

s)OJomauwea
uoneolddy

2
03
=]

RADICAL-WLMS ‘ Ensemble-Toolkit | § S_,
38
0 Q
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RADICAL-Pilot

RADICAL-SAGA
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“Building Blocks” Approach to Workflow Systems

Workflows aren’t what they used to be!

Pervasive, sophisticated but no
longer confined to “big science”

Diverse requirements, “design points”;
unlikely “one size fits all”

Extend traditional focus from end-users to
workflow system/tool developers!

Building Blocks (BB) permit workflow
tools and applications
Two illustrative examples of building
blocks:

WLMS (AIMES Model)

Pilot Job Systems (P* Model)

L4

L3

L2

L1

Applications

Workflows DSW

z
Synapse Swift ExTASY | | RepEx %
o
Skeleton BAC Seisflow 5
Ensemble Toolkit F--e g
.
3
RADICAL-WLMS  [---, | &
]
o
- - - - !
RADICAL-Pilot _4'_ T
3
«----- ' 3
RADICAL-SAGA C Il' -- :
Y |
ey ryrriinll | |
Y Y Y
-
HPC Grids Clouds S
7]

S

& RUTGERS



RADICAL-Cybertools: Ensemble Toolkit (EnTK)

Ensemble-Member = task = Execution Unit Replica Expanded Adapive | i
Multi-node, sub-node, MPI/non-MPI... Exchange Ensemble MSM
Simulation, Analysis, .. el LI

Ensemble Toolkit

AIMES Execution Model Application |- - - »{ Execution | __ [Resource | | Middleware

M Manager M
Support for heterogeneous tasks = ; —=
Adaptive Workload: Tasks and/or relations : Runtime l
: system |
between tasks changes, or unknown a — !
. . : | | |
priorr b o !
Resource A Resource B Resource C
. . . o Resources
Multiple dimensions of scalability: " .
- > Workload - - Resource —pResource . Intermediate
Concu rrency. 0(1 OK) tasks information bound tasks results
TaSk Size: 0(1 )'0(1 ,000) cores 3500 Execution times of gromacs simulations at dynamically computed core counts
Launch: O(100+) tasks per second O e
Task duration: O(1)-O(10,000) seconds O e
- 6 core(s)
% 8 core(s)
S 2000 = o) !
3 12 core(s)
o 1500( 3o
EIOOO ] DDHD
e
m H 0 DHD_]DDU
- 0. e o8
,,,,,,,,,,, O o]
S TOT R R e e N0 (S 0nETaNT a0
% RUTGERS T




HT-BAC: BAC + RADICAL-Cybertools

‘ ufBAC Client ’ User machine

Design Challenge: How to (i) provide
performance (ii) adequate functional
extensibility, (iii) keep new software

. 1 2 3 HPC resource
footprint. Sager | | Stgel | | stage1 Stage1 | | Redical Cybertools
Ensemble Toolkit
build build build build

Implementation: Use (i) functionally well-
defined building blocks, (ii) provide
well-defined interfaces and (iii)
separate (performance and
interoperability) from functionality.

s,
e,

e“:“ y =
RN o3 rm )
¥ 8 ol
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App 2: Multiscale simulation of nanomaterials

From micro to meso.....

106 coarse-grained g
molecular N oo’
¢
dynamics % =
8 . %)
107 ey .wo",,, , -
% *%ss
~ - - - -
v, atomistic parametrization
% 10-10 molecular of coarse-grained
o dynamics systems .
© <= PMF <amn- YYvYVvYe
g_ 10-12 R, %3 9%, W w
£ et || <o PF e || T Y YT YT
o “PERREAVAVAAY, P P ¥'YY Y
= R N oq 275003 1y o4 % oo .
i | AL A .- v
-14 o SERARIAEREREE. || B 8™\ Bo oo™
10 ab initio SRS R A A R 3 o P
SrRRA \2/ 4)
molecular N
dynamics < (2)
10-16 77N\
1 1 X
1012 &/ 101 10719 1079 107 1077

Spatial scale [m]

@ CPMD, local cluster @ LAMMPS (CG) BlueWonder, HECToR

(4 LAMMPS (CG) BlueJoule,

(2) LAMMPS (AA), HECTOR
HECToR, ARCHER

Size of data generated: ~10TB . All data is stored on the RDF and on EUDAT (www.eudat.eu).



App 2: Multiscale simulation of nanomaterials
From micro to meso ....

FabMD
Simulation
L7 Manager \\\\
’ Q ~
’ 7 ~
,/’ e GGGG \\\
PR U \ S
»7 / \ S
, / \ ~
,/ Y \ \\
’ /] \ S
,,/ ,I \\ S
s’ \ - . \\
’
Step 1. Step 2/ \ IStep 3 (iterative) S~y Step 4
|
LAMMPS
CPMD > LAMMPS | (coarse-grained
(ab initio MD) (all-atom MD) P LAMMPS > M[?)
SSnipoienias (coarse-grained A
for sheet edges MD) : A
. . 256 cores: E
8.32 cores: & . HECToR A 16-128 cores:
local cluster = . . HECTOR,
(Oppenheimer) s store atomistios . BlueWonder 192-16384
: 'target' system. = pmennaamnnnan , : e
: *load atomistic 'target' system & . QIRCJHEFv
n . - uedoule,
v vstore final CG parameters. BlusWonder
Estore snapshots for curation y Y
....................................... ) .
load final CG parametersE
Legend Data Storage < & store snapshots.
-« 3 data movement A Ry
-3 computational workflow EUDAT
- ==» FabMD execution management —

D. Groen, A. Bhati, J. Suter, J. Hetherington, S. Zasada, P. V. Coveney, ", Comp Phy Commun, 207, 375-385

(2016)



App 2: Multiscale simulation of nanomaterials
From meso to macro ... )

* Material properties at the
macroscopic scale depend
tightly on the structure of the
material and its evolution at
finer scales

e Using reduced models to
account for this dependency
such as constitutive equations
has limited accuracy and
stability (e.g. when nonlinear,
inelastic, anisotropic, or
history-dependent behaviors)

W
A

S Multi-scale simulations ;.
replace reduced models with
structural models of the
material at finer scale




Heterogeneous Multiscale Methods (HMM)

* Two or more structural models
loosely coupled as part of a single
SImUIaU_On_ _ _ spacescale

* partial information exchange in A
chosen space-time locations

* information exchange both ways X,
(bottom-up and top-down)

* discontinuity of time and space
discretization Ay

* faster relaxation times at lower scales M1 coarse model
St <At /

* periodicity in space - x, < Ax,, fine model

* Implementation of a FE-MD HMM

AT
e Macroscale mhodel based %n N
continuum mechanics using the -
finite element library Deal.ll time scale
* Nanoscale model based on l : I IP
molecular dynamics using LAMMPS At t At

* Exchange of strains (top-down) and
stresses and stiffness (bottom-up)



Workflow of the Finite Element -

Molecular Dynamics
HMM Coupling Scheme

* Solving continuum mechanics
quasi-static equilibrium using
an incremental iterative
algorithm

* Finite element computations
are short and parallelised

e At a given time, nanoscale
state updates can be run
'ndependently

I - PSNC, Poland

LRZ, Germany

timestep N

¥

>

finite element
prediction of internal
forces

{

independent tasks

finite element
prediction of strains

l

l

molecular dynamics
update of local stress
and stiffness

molecular dynamics
update of local stress

and stiffness

i

molecular dynamics
update of local stress
and stiffness

1

verification of internal
forces

no

close enough

to prediction?

timestep N+1




ce.s COMPAT

The FE-MD HMM in the ComPat project ::::

HIGH PERFORMANCE MULTISCALE COMPUTING PATTERNS

Heterogeneous Multi-scale

Computing

COMPAT Patterns
Multiscale Coupling Inter-cluster
Patterns' Libraries Library & Environment  ©  Communication Library
(MUSCLE) (MPWide)
Pilot Jobs
Patterns' Services
HMM Manager on-the-fly Database
-------- o
®
o Energy-aware Job & Advance
Oé Scheduler Reservation mm’g
0_12_: Resource Co-allocator Manager
COMPAT Middleware Data Transfer (gridFTP)

Services
Energy Consumption Optimization Service (ECOS)

Multisite Transport Overlay (MTO)



Conclusions dh

Reliable, accurate and reproducible binding affinity ranking
can be obtained only by ensemble simulations.

Scalable approach: results in hours.

ufBAC is a science gateway that hides the complexity of
the workflow in a simple, web accessible application

QCG Computing, RADICAL-Cybertools and Ensemble
ToolKit (EnTK) are a realization of the Building Blocks
approach to scalable workflows.

Allows BAC developers to focus on implementing new
ensemble based approaches independent of platform and
performance.

Heterogeneous multiscale materials simulations comprise
complex workflows of operations.

EU H2020 ComPat project e-infrastructure used to
manage simulations and mutiscale modelling linkages,
constituting a science gateway for multiscale computing.
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