Efficient Mass Spectra Prediction through Container Orchestration with a Scientific Workflow

Maximilian Hanussek
High Performance and Cloud Computing Group
Zentrum für Datenverarbeitung
Eberhard Karls Universität Tübingen

20.06.17
Poznań
• Introduction
• Key-technologies
• UNICORE workflow for QCEIMS
• Results & Discussion
• Conclusion/Outlook
Introduction

- Many useful tools are available
 - Hard to install
 - Difficult to use
 - Small user community

- Use existing technologies to simplify installation and usage
 - Broaden user community

Goal: Evaluation of Docker and UNICORE
Use case

- Quantum Chemical Electron Ionization Mass Spectrometry (QCEIMS)
 - Mass spectra prediction tool (Stephan Grimme et. al)\(^1\)
 - Complex execution procedure
 - Many required additional tools and software packages
 - HPC
- Nonetheless well working tool with good results

• Quantum Chemical Electron Ionization Mass Spectrometry (QCEIMS)
• Docker (container virtualization technology)
• Uniform Interface to Computing Resources (UNICORE)
Step 1

Step 2

Step 3

Step 4

neutral loss (H atom)

Key-technologies (Docker)

- Built Docker Image from Dockerfile
- Most tools included (MNDO99, DFTB+, ORCA, PubChemPy, ...)
- Stable computing environment
- Installation with root permissions
Key-technologies (UNICORE)

- Middleware software for distributed computing systems
- Developed at the research center Jülich and by further partners
- Offering different components:

<table>
<thead>
<tr>
<th>UNICORE Server</th>
<th>UNICORE Workflows</th>
<th>UNICORE Portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job submission</td>
<td>Workflow engine</td>
<td>Web access</td>
</tr>
<tr>
<td>Data handling</td>
<td>Connected to UNICORE Server</td>
<td>Use existing workflows</td>
</tr>
<tr>
<td>Resource allocation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Combined usage of Docker and UNICORE
• Automating the QCEIMS calculations
• Most software already preinstalled in Docker image
UNICORE Workflow for QCEIMS

Start

For each molecule

- File splitting
 - Format conversion and annotation
 - Open shell check
 - Open shell molecule
 - End
 - Database insertion
 - Report generation
 - Output merging
 - No open shell molecule
 - Configfile generation
 - Ground state calculation
 - Fragment generation
 - Fragmentation calculation
 - Fragmentation loop
Simple Benchmark Set

- 11 molecules
- 2 QC tools (MNDO99, DFTB+)
- OM2-D3 (MNDO99)
- DFTB3-D3 (DFTB+)
- Absolute value distance2:

\[D_A(I_E, I_S) = \left(1 + \frac{I_E - I_S}{I_S} \right)^{1} \]

Glycine (DFTB3-D3, 300 trj., D_A: 0.752)
Nicotinamide (DFTB3-D3, 200 trj., D_A: 0.660)
Mean molecule score

- **GABA**
- **Glycine**
- **Glycolic acid**
- **Nicotinamide**
- **Acetonitrile**
- **Ethanethiole**
- 2−Aminopropane
- 2−Nitrotoluene
- Vanillic acid
- Benzyl Cyanide
- Umbelliferone

MNDO99

DFTB+
Runtimes (QCEIMS)

Accumulated walltimes

OM2-D3
DFTB3-D3

CPU time [h]

Number of Trajectories
Results & Discussion (Docker)

- Successful integration as wrapping tool
- Occurred problems
 - Docker group = root
 - User mapping is mandatory
 - Manual garbage collection of exited and dead containers
 - Accumulation of Docker metadata (/var/lib/docker)
Challenges to overcome

- Encapsulation of multiple molecules
- Encapsulation of a molecule for fragmentation
- Merging generated results by unique identifier
- Explicit data staging
- QC tool monitoring
- Unicore-portal workflow adaption
 - Export workflow from UNICORE Rich Client (URC)
 - Integrate input field
 - Set independent path to workflow node scripts
UNICORE portal authentication

TLS login

You will be logged as: CN=Maximilian Hanussek,OU=Universitaet Tuebingen,O=Grid

Login with certificate

Switch to user registration
Job Computation

New UNICORE Job

Application

Job name: New UNICORE Job
Tag:
Select application: Workflow Template
Select version: any version
Command line arguments:

Workflow template parameters

Select a template

Editing workflow template file: UNICORE_QCEiMS_workflow.xml

splitSdf_INPUT: glycine.sdf

Submit
Conclusion/Outlook

- Successful simplification of QCEIMS
 - Default parameter change, QC tools (ORCA)
- Docker: Great potential, serious problems
- UNICORE: Generally applicable to complex tools
 - Login/Registration procedure

Relatively good in silico spectra is better than no spectrum.
Acknowledgment

Applied Bioinformatics group Tübingen
• Prof. Dr. Oliver Kohlbacher

High performance and cloud computing group Tübingen
• Dr. Jens Krüger

UNICORE-Support
• Dr. Bernd Schuller

QCEIMS
• Christoph Bauer, Prof. Dr. Stefan Grimme